Tag Archive: Micro-90

  1. The Importance of Cleaning Before Disinfecting

    Comments Off on The Importance of Cleaning Before Disinfecting

    Disinfecting surfaces to kill traces of microbes and disease is a critical concern right now. A common misconception is that simply disinfecting a surface is enough to sanitize it. This is not the case, cleaning and disinfecting are both important parts of a thorough sanitizing process.

    FoodBev photo 2

    Why do both?

    Surfaces must be properly cleaned prior to disinfecting. Removing traces of dirt, debris, and dust primes surfaces and equipment for disinfection. Soils can harbor germs and bacteria. Disinfection becomes less effective if surface soils are present.

    Clean.disinfect. table

    What happens if I disinfect without cleaning?

    If a surface is disinfected before it is cleaned, the remaining soils can still contribute to the growth of harmful microbes and lead to further contamination. The residual soils may also serve as a barrier, preventing the disinfectant from reaching the surface and doing its job. Lingering soils on the surface may affect the active chemicals in a disinfectant, impacting their efficiency. If the surface is thoroughly cleaned first, and validated for cleanliness, the disinfection step becomes much more effective.

    What are the steps for proper cleaning and disinfecting?

    1. Remove large debris
    2. Surface rinse with potable water
    3. Clean with a specialty detergent like Micro-90® or Micro® Green Clean
    4. Rinse thoroughly with potable water
    5. Disinfect
    6. Rinse again
    7. For regulated industries, validate the cleaning process

    Contact IPC’s product specialists for more information about hard surface cleaners for manufacturing and laboratory applications.

    Request a sample for testing today! 

    i (IFAS 2015 http://www.edis.ifas.ufl.edu/fs077)
    ii (Safefood 360 2012 http://safefood360.com/resources/Cleaning.pdf).

  2. Selecting the Right Ultrasonic Cleaning Detergent for Regulated Industries

    Comments Off on Selecting the Right Ultrasonic Cleaning Detergent for Regulated Industries

    Regulated industries use ultrasonic cleaning for pharmaceutical equipment, medical devices, surgical equipment, labware, optical instruments, and dental equipment because it is highly effective at removing soil and debris before sterilization, especially on intricate or hard-to-reach parts. A detergent must be used in conjunction with ultrasonic cleaning in order to effectively remove most soils. A multipurpose cleaner is ideal because of its versatility.

    3 Things to Consider When Selecting the Right Detergent for Your Ultrasonic Cleaner

    1. What are the Soils?

    Understanding which soils you need to remove will guide you in choosing the right detergent. Micro-90®  is an alkaline cleaner that is designed to work well on a broad spectrum of soils. It is extremely effective for removing oil, grease, wax, tar, flux, particulates, and biological debris.

    2. What are the Substrates?

    Choose a cleaner that is compatible with the surface you are cleaning. Micro-90 is a safe for use on most metals, elastomers, plastics, ceramics, and glass surfaces. Samples are available for compatibility testing.

    3. Safety and Environmental Impact

    Most commercial critical cleaners are effective in removing dirt, but many are also corrosive, harmful if inhaled, and environmentally hazardous. Safer cleaning detergents will be free of phosphates, solvents, silicates, phenols, and substances of very high concern.

    View this video to see the effectiveness of Micro-90 in ultrasonic cleaning.

    Using Micro-90 in Ultrasonic Cleaning

    Micro-90 is a multipurpose, alkaline concentrate that provides superior performance in ultrasonic cleaning. The ingredients in Micro-90 penetrate tough oils and greasy films, allowing the soil to become suspended in the solution without the risk of redepositing. These properties make Micro-90 just as effective as corrosive cleaners without the health or environmental risks. Micro-90 does not contain solvents, phosphates, or heavy metals. In fact, Micro-90 removes hard metals in water that would otherwise detract from the detergency of the solution.

    The ingredients in Micro-90 were chosen for easy validation in an FDA process. Reports can be provided upon request. It is also NSF registered as a USDA-A1 Cleaner. Micro-90 can be used in concentrations as low as 0.5% up to 5%, and concentration can be easily determined by conductivity. Micro-90 has a high cloud point, making it easy to see when parts are clean. When properly rinsed, Micro-90 leaves no residue.

    Try Micro-90 in your ultrasonic cleaning unit. Request your free sample!

  3. What Is The Shelf Life Of My Cleaner? (And, Why It Matters)

    Comments Off on What Is The Shelf Life Of My Cleaner? (And, Why It Matters)

    Remember that bottle of cleaner that’s been in your cabinet for years? How do you know if it’s still effective and safe to use? These things are good forever, right?

    Absolutely not! Chemical products do indeed have a shelf life. Paying attention to expiration dates helps ensure you are using products at their peak performance levels for optimal results.

    What Is Shelf Life?

    The shelf life of a product is defined as the “length of time that a commodity may be stored without becoming unfit for use, consumption, or sale.” (https://en.m.wikipedia.org/wiki/Shelf_life). It’s important to note that manufacturers determine the shelf life of a product based upon expectations of normal use and storage. Failure to follow recommended guidelines can limit the expected shelf life of any product.

    How Is Shelf Life Determined?

    While each product and each manufacturer is unique, shelf life is generally determined by assessing product stability under normal conditions over an extended period of time. Are the active ingredients still effective or have they deteriorated? Chemical composition and anticipated environmental factors both have a role in determining a product’s shelf life.

    Product quality can be assessed by determining the concentration of key ingredients. Once the active ingredients of a product begin to degrade, product strength may be diminished.

    Environmental factors include temperature, moisture and exposure to air. External contaminants or stresses can also affect product quality.

    What Is The Shelf Life of My Cleaner?

    Use this reference guide to see the shelf life of IPC’s cleaners:

    Is This Information On the Product Container?

    All of IPC’s products are stamped with a six-digit lot number that signifies the date of manufacture (YY/MM/DD). For example, a lot number of 190301 signifies that the product was manufactured on March 1, 2019.  The product expiration date is stamped directly below the lot number.

    How Does IPC Calculate Shelf Life?

    The shelf life of IPC’s products is determined by observation and testing. Part of the manufacturing process includes retaining a sample of each lot number produced for quality control.

    To determine the shelf life of its cleaners, IPC tests for changes in pH, specific gravity and detergency.

    What Other Factors Affect Shelf Life?

    The manner in which products are handled by the end user may also influence shelf life. It’s always a good idea to follow the manufacturer’s recommendations for use, storage and handling. Follow these steps to maintain product quality and get the most out of your cleaner:

    • Store at recommended temperatures
    • Properly close containers between use – do not leave bottles uncapped
    • Do not mix with other chemicals
    • Use clean tools to avoid introducing contaminants
    • Follow manufacturer’s instructions for use

    What Happens If I Use My Cleaner After The Expiration Date?

    Using products beyond their expected expiration date is not recommended. The detergency of your cleaner may have diminished, which can have an impact on your cleaning application. If you have questions about whether or not it’s okay to use your product, contact the manufacturer for assistance.

    Have questions about cleaners? Want a free sample for testing? IPC can help!

  4. Why Micro-90® is A Lab Tech’s Best Friend

    Comments Off on Why Micro-90® is A Lab Tech’s Best Friend

    What Is One Of A Lab Tech’s Biggest Challenges?

    Cleaning lab equipment, of course! Everyone knows that labware must be properly cleaned, but what’s the best way to achieve that goal? And, why is cleaning so important?

    Why Clean Lab Equipment?

    Regular cleaning is one of the easiest ways to keep your equipment functioning properly. Apparatus that is not thoroughly cleaned can yield inaccurate and inconsistent results. Trace ingredients from previous use must be removed to avoid cross-contamination and to ensure that all future test results are error-free.

    Proper maintenance of labware and apparatus helps to ensure that your equipment is working correctly and your lab is functioning efficiently. Analyzers, centrifuges, microscopes, pipettes, beakers, slides and flasks all need to be kept clean to provide accurate readings. Failure to properly maintain lab equipment can have a direct impact on test results.

    How To Set Up A Cleaning Regimen?  

    Since regular cleaning is one of the easiest ways to keep your equipment functioning properly, it’s important to establish a cleaning procedure and stick to it. The exterior surfaces of all equipment should be wiped down on a daily basis, after each use. A complete cleaning should be performed at least once a week.

    Consider these factors when setting up your cleaning process: 

    Download IPC’s 7-Step Guide to the Proper Use of Critical Cleaners for help in setting up your cleaning regimen.

    Selecting the right cleaner for your lab equipment is extremely important. There are many different kinds of products available, so it’s important to consider all of the above factors when making your decision.

    Micro-90…The Lab Tech’s Best Friend

    Many labs rely on Micro-90 for manual and ultrasonic cleaning of glassware and equipment. Micro-90 is a mild, yet powerful, multipurpose, alkaline cleaning concentrate that is excellent for removing a vast array of soils from flasks, pipettes, slides, stainless steel, plastic, glass, and other laboratory equipment and surfaces. Micro-90 contains ionic and non-ionic ingredients which combine to produce a variety of cleaning actions. Micro-90 lifts, disperses, emulsifies, sequesters, suspends, and decomposes soils, then rinses away leaving the surface absolutely clean. When properly rinsed, Micro-90 does not leave any residue.

    Why Lab Tech’s Love Micro-90:

    • Effective on a wide range of soils

    • Compatible with most hard surfaces
    • Manufactured in a dedicated system
    • Filtered to 1 Micron
    • Can be used for manual, CIP, and ultrasonic cleaning applications
    • Free rinsing, does not leave residue or product build-up
    • Cleaning validation methods are available
    • Safe, environmentally friendly formula
    • Economical, concentrated formula that is easy to dilute
    • NSF registered as USDA-A1 Cleaner
    Still not convinced? Request a free sample for testing and try Micro-90 for your most challenging lab cleaning applications!
  5. Best of 2018: IPC’s Top 5 Posts of the Year

    Comments Off on Best of 2018: IPC’s Top 5 Posts of the Year

    As 2018 draws to a close, it’s time to take a look back at all that has happened over the past twelve months. This has been a very productive year for International Products Corporation and we look forward to continued growth during 2019.

    We have embarked on a building renovation project and are expanding our warehouse to better serve our customers. Recently, we installed a new manufacturing filling line that provides for more efficient and quicker operations.

    Throughout the year we exhibited at various trade shows and visited many of our customers and distributors worldwide.

    Our on-site laboratory has worked on various customer driven research projects and continues to ensure the quality of our products.

    Our employees banded together during the holiday season making donations to local causes to help those in need.

    Our popular blog continues to attract new followers and provide our customer base with informative and helpful product and industry insights.

    As the year comes to an end, we want to thank all of our loyal followers and customers for helping to make 2018 a great year.

    Below are our 5 most popular blog posts of 2018:

    1. How do I Choose the Best Detergent for My Cleaning Application?

    It’s easy to see that you have a dirty surface that needs to be cleaned. Figuring out what type of cleaner to use can be tricky! Choosing the right product from the outset will make your cleaning task easier, quicker and more efficient. So, how do you know which detergent to use?…

    2. Everything You Need To Know For Easy O-ring Installation

    The O-ring…the little part that plays a big role! “What are the parts of a car?” Most people will answer with “engine, thermostat, radiator, water pump, battery, alternator, ignition, steering wheel, tires, windows, doors, and seat belts”. Not too many people will mention O-rings…

    3. Save Time And Money With Preventative Maintenance

    We’ve all been there. Any of these scenarios ring a bell? A long road trip and your car won’t start. You’re hosting Thanksgiving dinner and your oven isn’t working. Or, it’s the worst heat wave of the summer and your air conditioning unit dies. Regardless of the scenario, we can all agree that malfunctioning equipment is extremely aggravating. If only there were a way to prevent these things from happening!…

    4. Reclaiming Water To Maintain Future Economic Growth

    How do you provide a consistent, high quality supply of water when you have a large volume ethanol distiller located in your backyard? The city of Fargo, ND came up with the perfect solution: reclaim water through the municipal wastewater treatment plant!…

    5. 10 Things To Know When Choosing An Assembly Lubricant

    A lubricant is a material that reduces the friction between two surfaces making it easier for them to move across each other. Lubricity measures the reduction of friction that results from using a lubricant. A higher percentage of lubricity indicates a greater reduction of force….

    Did we miss your favorite post from 2018? Please let us know! We have more great content coming your way in 2019. Be sure to subscribe to the IPC blog to read the latest and greatest from the IPC team.

    Happy New Year and Best Wishes for a wonderful 2019 from everyone at IPC!

  6. Reclaiming Water To Maintain Future Economic Growth

    Comments Off on Reclaiming Water To Maintain Future Economic Growth

    The Challenge

    How do you provide a consistent, high quality supply of water when you have a large volume ethanol distiller located in your backyard? The city of Fargo, ND came up with the perfect solution: reclaim water through the municipal wastewater treatment plant!

    The History

    The wastewater treatment plant in Fargo, North Dakota has an auxiliary effluent re-use facility constructed specifically to produce reverse osmosis quality water destined for ethanol production. A local corn to ethanol distiller, Tharaldson Ethanol, requires approximately 1,000,000 gallons (3.8 million liters) of reverse osmosis water per day above the wastewater treatment plant’s normal processing volumes. Fargo’s wastewater control systems manager, Jeff Hoff, manages the effluent re-use facility to ensure this additional volume is met on a daily basis.

    The Problem

    A key component of the effluent re-use facility is the ultra-filtration process, which uses 0.4μ polyvinylidene difluoride (PVDF) membranes with an upper pH limit of 10.0. These membranes are fouled primarily with petroleum sulfonates and bacterial secretions. Particularly in cold weather, the upstream BOD step has frequent “upsets,” where the bacteria die and secrete a water soluble foulant that adheres strongly to the PVDF polymer and significantly increases the trans-membrane pressure (TMP). These “upsets” must be resolved quickly to ensure a plentiful supply of pure water.

    The Test

    In order to determine the optimal cleaning regimen to resolve these upsets, Jeff systematically evaluated the performance of twenty different cleaners and hundreds of different combinations and concentrations, including commonly used commodities and many formulated membrane cleaners.

    The Solution

    Jeff discovered that Micro-90®, a formulated cleaner from International Products Corporation (IPC), stood out because it performed better than all of the commodities and other formulated membrane cleaners, particularly on the bacterial secretions. What Jeff found most impressive is that this formulated cleaner worked effectively without the use of phosphates, silicates, and strong alkalis, at a membrane compatible pH of only 9.5, and at a 0.3 percent concentration.

    The Product

    Micro-90® is a mild, yet powerful, multipurpose, alkaline cleaning concentrate that is used for membrane cleaning as well as in laboratories, industrial applications, and critical cleaning processes. A unique chelating detergent, Micro-90® contains anionic and non-ionic ingredients which combine to produce a variety of cleaning actions. Micro-90® is compatible with UF, RO, Ceramic and NF Systems.

    The Long-Term Success

    This same formulation has been in use at Fargo’s effluent re-use facility since October 2010. Some of the original PVDF membranes are still used and continue to see significant TMP drops after cleaning. Although the bacterial upsets cannot be prevented, their fouling can be resolved in a predictable manner with the use of this formulated product.

    The engineers at the facility recognize that using Micro-90® for regularly scheduled preventative maintenance and cleaning of the membranes proves to be an effective, safe, and economical method of keeping the plant running efficiently and the water flowing continually. Based on its effectiveness, safe profile, compatibility and economical cost per use, they have recommended Micro-90® to design engineers at similar effluent re-use facilities.

    Read more about cleaning filter membranes here:
    How To Choose the Proper Membrane Cleaner
    Make Your Membranes Last…A Simple 10 Step Guide
  7. The ABC’s of Cleaning Validation: A Simple Primer

    Comments Off on The ABC’s of Cleaning Validation: A Simple Primer

    What is Cleaning Validation?

    Cleaning validation is used to ensure that a cleaning procedure removes all trace soils, cutting fluids, fingerprints, particulates and cleaning agents from surfaces in regulated processes.  Any residue must be removed to a predetermined level of cleanliness. Cleaning validation processes protect against the cross-contamination of ingredients from one batch to another, ensure that surfaces or devices are free of residue prior to any further sterilization process, and assist in ensuring product quality. 

    Cleaning validation is required for use in industries following Good Manufacturing Practices (GMP) as outlined by the US FDA. Manufacturers in the pharmaceutical, medical device and food and beverage industries all use cleaning validation methods to ensure that their equipment is free of waste and that subsequent products manufactured on that equipment are not jeopardized by any remaining soils or soap residue.

    FDA guidelines for cleaning validation require specific written procedures detailing how cleaning processes will be validated. These should include:

    • Who is responsible for performing and approving the validation
    • Acceptance criteria
    • When revalidation is required
    • Sampling procedures
    • Analytical methods to be used
    • Documentation of the studies and results
    • A final conclusive report stating that all residues have been removed to the predetermined level

    If any part of the cleaning process is changed, the cleaning validation process must also be updated.

    Cleaning Validation Methods

    Various analytical methods can be used to detect cleaner residues on equipment. Each method is unique to the specific cleaner used. Cleaner manufacturers should be able to provide detailed validation methods for their products.

    Regulated industries rely, in most cases, on quantitative validation methods. Quantitative validation methods provide measurable and exact results, whereas qualitative validation methods involve more subjective methods, such as visual observations.

    HPLC (High Performance Liquid Chromatography)

    HPLC stands for high performance liquid chromatography. HPLC validation methods can pinpoint exact ingredients. This validation method uses pressure to force a solution through columns to separate, identify and quantify each of its components.

    The columns are filled with a solid adsorbent substance. As the solution is forced through the column, each of its components reacts differently to this substance. This results in varying flow rates for each component in the solution. The sample solution is separated into its individual elements by the rate at which they flow out of the column.

    Once the individual components of the sample solution are separated, various types of detectors can be used for identification. Some common detectors include:
    CAD – charged aerosol detector
    DAD – diode array detector
    MS – mass spectrometry

    HPLC validation methods separate liquids into their individual components. This information is then used to determine the level of residue of an individual component so that predetermined acceptable levels of cleanliness are met. HPLC is the most common type of quantitative cleaning validation method currently used.

    TOC (Total Organic Carbon)

    TOC stands for total organic compound. TOC validation methods detect carbon content in a tested sample. The results are not ingredient specific. The amount of carbon in the sample can come from any one of a number of varying sources including contamination, a dirty tank, testing equipment, ingredient residue or cleaner residue. The objective is that the overall results of TOC testing meet the predetermined acceptable levels. Results that exceed the predetermined levels are not acceptable.

    UV VIS

    UV VIS stands for ultraviolet visible spectroscopy. This detection method relies upon the absorption of light to quantitate chemicals at specific wavelengths. Sometimes, a chemical agent is added to the rinse water sample to make key ingredients visible. Chemicals absorb light differently at different wavelengths.

    Methylene blue, for example, is routinely used to react to sulfonate surfactants and detect detergent residue. The intensity of the color is an indication of how much sulfonate remains in the sample.

    In the illustration above, the fluid at the top of the tubes shows the water in the solution. The fluid on the bottom indicates the amount of chloroform in the test sample. As the concentration of Micro-90 increases, more sulfonate is being pulled out of the top water level by methylene blue and the methylene blue-sulfonate complex enters the bottom chloroform layer resulting in an increasing blue intensity.

    UV VIS is an older technology and is not as used as often as HPLC.

    The Role Of The Cleaner Manufacturer

    Cleaning validation is a critical part of the manufacturing process in regulated industries. Validation methods must be developed, planned and included in the production method. Since cleaning validation methods are unique to the cleaner used, it makes sense to expect the manufacturer to provide support. By relying on the cleaner manufacturer for detailed validation methods, manufacturers in regulated industries can focus their resources on manufacturing and product development, saving a great deal of time and money.

    Download IPC’s validation overview or contact our technical specialists for detailed validation methods.

  8. Guidelines For Cleaning Pharmaceutical Processing Equipment

    Comments Off on Guidelines For Cleaning Pharmaceutical Processing Equipment

    Cleaning pharmaceutical processing equipment is challenging. Cleaning methods, soils present, type of manufacturing equipment, surfaces cleaned, choice of cleaning detergent and temperature should all be considered when setting up a cleaning procedure. Cleaning validation methods are required. The entire cleaning process must be standardized and documented according to the FDA’s cGMP regulations.

    Why Clean Pharmaceutical Processing Equipment? 

    • Maintain product quality.
    • Remove all trace ingredients to prevent the transfer of ingredients from one product to the next. This is especially important when multiple products are produced on the same equipment.
    • Prevent equipment malfunctions that may lead to product contamination.
    • Provide a clean surface for disinfection. Surfaces cannot be properly sanitized or disinfected if they are not thoroughly cleaned first.
    • Comply with local and international standards and regulations to ensure consumer safety and avoid legal issues.
    • Increase plant performance and productivity by diminishing waste, maintaining equipment and preserving product quality.
    • Enhance worker safety by providing a clean working environment and smoothly functioning equipment.

    Establishing A Cleaning Procedure

    Federal Regulations

    Pharmaceutical manufacturers are required to set up a fully documented written cleaning procedure for each piece of processing equipment in compliance with FDA 21 CFR Part 211.67. Documentation should include:

    • Responsibility for equipment cleaning and maintenance
    • Cleaning and sanitization schedules
    • A detailed description of the cleaning procedure
    • Removal of previous batch identification
    • Protection of clean equipment
    • Inspection of equipment prior to use

    Manufacturers must outline each of these steps in detail to be sure that all processes are followed clearly and succinctly.

    Cleaning Procedures

    Federal regulations require a very specific description of each step of the cleaning procedure. The following details should be documented.

    • Frequency of cleaning – including time requirements between processing products and cleaning
    • Cleaning tools used – any sponges, brushes, scrapers, sprayers, wipes or equipment used to aid the cleaning process
    • Establishment and sequence of each cleaning step
    • Identification of each specific piece of equipment to be cleaned, including instructions for cleaning between batches of the same or different products
    • Cleaning method – clean-in-place (CIP) or clean-out-of-place (COP)
    • Detailed instructions for any required disassembly and re-assembly of equipment if COP methods are used. Instructions should specify the parts to be removed and any assembly aids used during this process.
    • Identification of all cleaning detergents and detailed instructions for their use. Usage instructions should include amounts, concentration, temperature, dwell time and application method.
    • Type of water – deionized, distilled or tap
    • Number of rinse steps required
    • Drying and storage guidelines
    • Instructions for visual inspection after cleaning
    • Cleaning validation methods

    How to Clean

    Several factors must be taken into consideration to set up an effective cleaning process and remain in compliance with federal regulations.

     Soils

    Soils found on pharmaceutical processing equipment may be traces of the various ingredients used in production or soils from the actual manufacturing process such as oil, grease, dust or minerals. Understanding the soils that are present will guide your choice of cleaning detergent.

    Gels, polyethylene glycol, oils, titanium dioxide, dyes, silicons, flavorings, petrolatum, paraffin, proteins, steroids, sugars, alcohol, stearates, and cornstarch are some of the typical foulants that are often found on pharmaceutical processing equipment.

    Each type of soil is unique and requires the proper detergent to thoroughly clean the surface. Choose a cleaner that will best attack the soils you are trying to remove. Alkaline cleaners are the best choice for cleaning soils such as gels, dyes and petrolatum, while citric acid based cleaners are better suited for removing titanium dioxide. Protein or starch-based soils may require the use of an enzyme cleaner. Use the table below to help match the most effective type of cleaner to each kind of soil.

    Type of Equipment

    Mixing tanks, tablet presses, capsule fillers, centrifuges, granulators, filling lines, mixers, conveyors, filters, fluid lines, batch process tanks, tubes and flasks all need to be thoroughly cleaned. The design of the equipment must be taken into consideration. By nature of its construction, some types of equipment will be more difficult to clean than others. Hidden parts and blind holes present unique challenges.

    Another important factor to consider is the how the equipment is used. Are you cleaning a dedicated production system or equipment that is used to produce a range of products? Processing equipment used to produce multiple products has a greater chance of cross contamination of ingredients.

    It’s also important to select a cleaner that is compatible with the surface of the equipment you are cleaning. The cleaner manufacturer should be able to guide you and provide compatibility studies for their products.

    Cleaning Method and Location

    Clean-in-place (CIP) or Clean-out-of-place (COP)?

    CIP is generally used for large systems and components that cannot easily be taken apart. CIP often results in less downtime since it eliminates the need to take apart or move the equipment. Automated systems, spray systems and immersion are all examples of CIP operations.

    COP is most often used for smaller pieces of equipment or smaller parts of larger equipment that can be removed and re-assembled after cleaning. COP can involve either manual washing or use of machine washers. Specific instructions for disassembling and re-assembling equipment must be followed.

    What cleaning method will you use?

    Manual, ultrasonic, spray, machine and automated systems are all used for cleaning pharmaceutical equipment. The type of cleaning method used will impact your choice of detergent. Automatic parts cleaners and high-pressure washers require low foaming detergents.

    Temperature

    In most cases, increasing the temperature is one of the best ways to speed up or improve the cleaning action. The temperature parameters that should be used for any individual cleaning application will depend upon the equipment and the soils that are present, as well as your choice of detergent and wash method. Check with the manufacturer for the maximum suggested operating temperature for your detergent.

    Dwell Time

    The length of the cleaning cycle contributes to the effectiveness of your cleaning application. In most cases, a longer dwell time will improve the results. However, all factors – soils, temperature, substrate, detergent and cleaning method must be taken into consideration.

    Rinse Step

    Thorough rinsing should follow cleaning. Rinsing removes any excess detergent left on the item. For critical cleaning applications, it is best to use deionized or distilled water, as rinsing with ordinary water may introduce new contaminants.

    Cleaning Validation

    Cleaning validation is a part of the regulatory compliance process for cleaning pharmaceutical processing equipment. Validation ensures that all equipment is washed according to previously determined standards and that all traces of soil and detergent are removed. Validation methods are unique to each detergent and should be available from most cleaner manufacturers.

    Download IPC’s “7 Step Guide to the Proper Usage of Critical Cleaners” for more information on establishing a cleaning regimen.

    Need help choosing the right specialty cleaner for your pharmaceutical cleaning application? Contact one of International Products Corporation’s (IPC) technical specialists or request a free cleaner sample for testing. All of IPC’s specialty cleaners are registered with NSF as A1 cleaners and can be validated in FDA processes.

  9. How to Properly Clean Medical Devices

    Comments Off on How to Properly Clean Medical Devices

    When it comes to medical devices cleanliness is crucial. All medical devices, whether they are disposable, implantable or reusable, must be cleaned during the manufacturing process to remove oil, grease, fingerprints and other manufacturing soils. Reusable products must also be thoroughly cleaned and sterilized between each use to avoid infecting patients or causing illness. Reaching the right level of cleanliness does not come automatically. A well planned cleaning regimen must be developed and followed carefully.

    Developing a Cleaning Process

    Medical device manufacturers must provide proof that their products can be adequately cleaned as part of the FDA approval process. As a result, most manufacturers now incorporate setting up a cleaning protocol as part of the design and development phase.

    Factors to consider when setting up a cleaning regimen:

    • Soils: Choose a cleaner that will best attack the soils you are trying to remove. Enzyme cleaners are often used for medical device cleaning applications since they work well at removing organic soils. Protease enzymes in particular are a good choice for protein based organic soils like blood, fat, sweat, mucous, feces and tissue.

    • Surface: Titanium, plastic, ceramic, silicone and metal are some of the more common materials used in the manufacture of medical devices. It’s important to select a cleaner that is compatible with the substrate of the device you are cleaning. The cleaner manufacturer should be able to guide you and provide compatibility studies for their products.
    • Wash method: Common methods of cleaning medical devices include automatic washers, ultrasonic cleaners and manual washing. Factors such as soil, substrate, composition and end use of the device are taken into consideration. Regardless of the method used, it’s extremely important to be sure that all soils are removed from blind holes and internal passages of the device.
    • Temperature: In most cases, increasing the temperature is one of the best ways to speed up or improve the cleaning action. The temperature parameters that should be used for any individual cleaning application will depend upon the make-up of the medical device and the soils that are present, as well as your choice of detergent and wash method. Check with the manufacturer for the maximum suggested operating temperature for your detergent.
    • Dwell time: The length of the cleaning cycle contributes to the effectiveness of your cleaning application. In most cases, a longer dwell time will improve the results. However, all factors – soils, temperature, substrate, detergent and cleaning method must be taken into consideration.
    • Rinse step: Thorough rinsing should follow cleaning. Rinsing removes any excess detergent left on the item. For critical cleaning applications it is best to use deionized or distilled water, as rinsing with ordinary water may introduce new contaminates.
    • Validation procedures: Cleaning validation is a part of the regulatory compliance process for medical device manufacturing and reprocessing. Validation ensures that medical devices are washed according to previously determined standards and that all traces of soil and detergent are removed. Validation methods are unique to each detergent and should be available from most cleaner manufacturers.

    Download IPC’s “7 Step Guide to the Proper Usage of Critical Cleaners” for more information on establishing a cleaning regimen.

    Cleaning and Sterilizing

     What’s the Difference?

    Medical devices not only need to be clean, they also need to be sterile. Medical devices that are not properly cleaned and sterilized can lead to patient infection. Cleaning and sterilization are two distinct processes and both must be performed to ensure that medical devices meet safety standards.

    The CDC defines cleaning as “the removal of foreign material (e.g., soil, and organic material) from objects…normally accomplished using water with detergents or enzymatic products”. (https://www.cdc.gov/infectioncontrol/guidelines/disinfection/cleaning.html). They describe sterilization as a process that “destroys all microorganisms on the surface of an article or in a fluid to prevent disease transmission associated with the use of that item”. (https://www.cdc.gov/infectioncontrol/guidelines/disinfection/sterilization/index.html). The CDC has established guidelines that are used to determine if a medical device is considered sterile. This is referred to as the sterility assurance level or SAL of a product and is defined as the likelihood that any viable microorganisms will exist on a device after sterilizing.

    Why do Both?

    Clearly we have two different, albeit related, processes. So, why do both? Cleaning the medical devices first ensures that they are free from soils and debris that can cause infection and reduce the efficiency of the sterilization process.

    The CDC guidelines explain that “Thorough cleaning is required before high-level disinfection and sterilization because inorganic and organic materials that remain on the surfaces of instruments interfere with the effectiveness of these processes. Also, if soiled materials dry or bake onto the instruments, the removal process becomes more difficult and the disinfection or sterilization process less effective or ineffective.” (https://www.cdc.gov/infectioncontrol/guidelines/disinfection/cleaning.html).

    If a surface is sterilized or disinfected before it is cleaned, the remaining soils can still contribute to the growth of harmful germs and lead to further contamination. Lingering soils on the surface of the medical device can serve as a barrier and impact the efficiency of the sterilization process. If the surface is thoroughly cleaned first, and validated for cleanliness, sterilization is much more effective.

    Interested in learning more about choosing the right specialty cleaner for your medical device cleaning application? Contact one of International Products Corporation’s (IPC) technical specialists or request a free cleaner sample for testing. All of IPC’s specialty cleaners are registered with NSF as A1 cleaners and can be validated in FDA processes.

  10. How do I Choose the Best Detergent for My Cleaning Application?

    Comments Off on How do I Choose the Best Detergent for My Cleaning Application?

    It’s easy to see that you have a dirty surface that needs to be cleaned. Figuring out what type of cleaner to use can be tricky! Choosing the right product from the outset will make your cleaning task easier, quicker and more efficient. So, how do you know which detergent to use?

    Dirt is Dirt, Right?

    Absolutely not! All soils are different and need to be treated properly. A detergent that works well for cleaning grease and oil might not be the best choice for getting rid of soap scum or starchy soils. While some cleaners may work well for a broad spectrum of soils, others may be needed to target specific types of dirt.

    Alkaline cleaners work well for organic soils like oils and grease, while acid based cleaners are more effective on inorganic soils such metals and salts. Knowing what type of soil you are dealing with is an important step to choosing the right detergent.

    This helpful chart matches detergents to soils commonly found on parts and equipment in laboratories, pharmaceutical plants, food & beverage manufacturing sites, medical devices, filter membranes and manufacturing facilities.

    What are You Cleaning?

    Glass? Metal? Rubber? Electronic parts? Filter membranes? Understanding how different detergents affect different surfaces will certainly have an impact on your choice of cleaner. It’s important to be sure that the detergent you are using is compatible with the surface you are cleaning.

    Many filter membranes are sensitive to harsh chemicals and extreme pH levels, so a cleaner with a mild pH range and safe ingredients may be the right choice. Softer metals and delicate electronic parts may require use of a cleaner with a neutral pH.

    The manufacturer of the cleaner should be able to provide you with compatibility information for the product you are using.

    How are You Cleaning?

    The cleaning method you plan to use also plays a role in choosing a detergent. Some of the more common methods used in manufacturing and laboratory applications include:
    • Ultrasonic cleaning
    • CIP (clean-in place)
    • Manual or hand wash
    • Automatic washers
    It’s important to choose a detergent that works well for your chosen cleaning method. For example, if you are using an automatic washer it’s wise to use a low foaming cleaner. Otherwise you may end up with a room full of foamy suds. While this is great fodder for TV sitcoms, it’s not so funny in real life.

    Is Your Cleaner Safe?

    There are many cleaners on the market that do a great job at removing dirt, but they contain solvents and other harmful ingredients. Look for cleaners that are both effective and safe. Many cleaners are biodegradable. Try to avoid products that contain phosphates, solvents, silicates, phenols, and substances of very high concern.

    International Products Corporation’s (IPC) cleaners are safe for personnel, materials, equipment and the environment. Yet, they are powerful enough to remove the most difficult soils. This makes them excellent alternatives to hazardous solvents and chemicals frequently used for precision cleaning applications.

    The Manufacturer Matters

    When you select a product for your critical cleaning application you should be equally as concerned with the support provided by the manufacturer as you are with the product performance.The benefits of working with an experienced specialty cleaner manufacturer are that they can offer technical guidance and provide a variety of products to best meet your needs. Cleaner manufacturers should be able to assist their customers by providing validation methods, compatibility studies, toxicology reports, regulatory compliance, free product samples, and technical support.

    There are so many variables that exist in choosing the right cleaning product. Remember to consider the soils, the surfaces, the cleaning method, the safety and the manufacturer. With careful thought and planning you can find a cleaner that meets all of your specifications. Choosing wisely makes a difference!

    Download IPC’s ePaper for more information about choosing a cleaner and establishing the right cleaning parameters.

Detergent Selection Guide

= Used ; = Preferred
SOILS Micro-90® Micro® Green Clean Micro® A07 Surface-Cleanse/930® LF2100® Zymit® Low-Foam Zymit® Pro
Adhesives
Biofilm
Biological soils: Blood, Feces, Mucous, Sebum, Sweat, Urine
Dyes, Inks
Eggs, Butter, Fruit Stains
Emulsifiers
Fat
Fingerprints
Flavor, Fragrances
Gelatin
Gels
Grass
Insoluble Salts
Milkstone
Oils
Oxides
Paraffins
Petrolatum
Proteins
Scale
Shop Dusts, Soldering Flux
Silicons
Starch
Tar
Tissue
Titanium Dioxides